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Received 27 February 1987, in final form 14 May 1987 

Abstract. The problem of the equipartitioning of a random graph of fixed finite valence 
is studied by comparison with a ferromagnetic Bethe lattice with random boundary condi- 
tions. The simplicity of recursion relations for effective fields due to descendents on Bethe 
lattices provides simple approximations for the optimal cost, in quite good agreement with 
simulations. 

Recently, there has been much interest in applying techniques from the physics of 
disordered and frustrated systems to the study of complex optimisation problems. One 
example is the graph bipartitioning problem [l] in which one has a set of randomly 
connected vertices and the issue is to partition them in,o two subsets of equal size, so 
that the number of connections between the two sets, or 'cost' Net, is minimised. By 
associating an king spin with each vertex, so that it takes the value +1 if the vertex 
belongs to one set and -1 if otherwise, this problem can be mapped into that of finding 
the ground state of a ferromagnetic Ising model on the network with an identical 
configuration of bonds, subject to the constraint that the total magnetisation is zero 
[ l ,  21. The energy E of the Ising system (in units of the coupling strength J )  and the 
cost N,, of the graph partitioning are related by E = -Nb+2Nct ,  where Nb is the total 
number of bonds. 

In the thermodynamic limit (i.e. as the total number of vertices becomes infinite), 
we consider the cost per vertex averaged over an ensemble of graphs having the same 
constraints of connectivity but different explicit configurations. For the case of extensive 
connectivity (in which the probability p that any two vertices are connected is indepen- 
dent of the total number of vertices N )  the graph bipartitioning problem is equivalent 
to finding the ground-state energy of the infinite-range Sherrington-Kirkpatrick ( SK)  
spin glass [3] and has been solved [ 1,4,5]. 

This letter is concerned with intensive connectivity with every vertex connected to 
the same number (Y of other vertices; we refer to (Y as the valence. This problem has 
been studied numerically by Banavar et al [6] and an empirical formula proposed for 
the ground-state energy. We present here some simple approximate analytic procedures 
for estimating this quantity, obtaining results in quite good agreement with the simula- 
tions. 

The key basis for our approximations is the observation that paths between con- 
nected vertices on a graph of random intensive connectivity are effectively tree-like 
over finite numbers of steps, the average length of closed loops increasing with N. 
Indeed, Banavar et a1 [6] have demonstrated that a system of unconstrained Ising 
spins, located on the vertices of such a graph and interacting ferromagnetically where 
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a connecting edge exists, have in the thermodynamic limit the same transition tem- 
perature as for spins on a Bethe lattice of the same valence and exchange strength. 
In the present problem, with its equipartition or zero-magnetisation constraint, we 
therefore simulate the problem of graph partitioning by that of spins on Bethe lattices 
interacting ferromagnetically (with identical neighbouring exchange strengths) but 
subjected to quenched random fields on the boundary spins. The advantage of a Bethe 
lattice lies in the simple recursive evaluation of local fields due to descendents. With 
quenched random boundary fields, having a symmetric distribution, the recursive 
relation ensures the zero-magnetisation constraint to be held among the spins of each 
ascending generation. Furthermore, a Rethe spin glass of random * J  bonds can be 
gauge transformed into this ferromagnetic Bethe system with random boundary fields 
[7], hence also suggesting a basis for the features of non-self-averaging and ultra- 
metricity [8] found in the simulations [ 6 ] .  

We start by considering an Ising ferromagnet on a Bethe lattice 

where ( z j )  denotes the pair of neighbouring sites i,j. The Bethe lattice is constructed 
as follows. A central site (zeroth generation) branches out to a 'neighbouring' sites 
(first descendents) with thereafter each site branching out to K = (a - 1) further sites 
until the Nth generation. To simulate the constraint of zero magnetisation and the 
random connectivity of the graph bipartitioning problem we impose random fields on 
the boundary (surface) spins with a symmetric distribution 

P( h )  = P( - h ) .  (2) 

Once the boundary fields are assigned, the effective field at any site due to its 
descendents follows recursively from [9,10] 

K 
p h  = 1 tanh-'(tanh p J  tanh p h i )  

i = l  
(3) 

where the hi on the right-hand side are the corresponding fields on the immediate 
descendents, or the boundary fields in the case of the Nth generation. In the case of 
random boundary conditions this leads to a recursive relation between the effective 
field distributions of sequential generations 

P , ( h ) =  d h i .  ..~~KP,+I(~I)...P,+I(~K) 

(4) 

where P, ( h )  is the distribution at the sth generation. Far from the surface P, ( h )  tends 
towards a 'fixed-point' distribution. At high temperatures this fixed-point distribution 
is a delta function at h = 0, corresponding to a paramagnet, whilst beneath a critical 
temperature T,= J/tanh-'(K-''*) the P ( h ) ,  which retains its P ( h )  = P ( - h )  symmetry, 
acquires a finite width, characteristic of a spin glass [ 10, 113. 

1 K 
x 6 h - p-' 1 tanh-'(tanh p J  tanh p h i )  

I 
( i = I  

The recursion relations simplify at T = 0. Thus equation (3) becomes 
K 

h = 1 sgn hi min(J, lhil) 
i = l  
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where the right-hand side refers to the immediate descendents of the site on the 
left-hand side. It is clearly natural to restrict the boundary fields to hi = n J ;  n integral, 
In1 d K .  Then, at earlier generations, h is similarly restricted and given by 

K 

h = J sgn hi.  ( 6 )  
i = l  

Now P (  h = 0) = p o  suffices as a measure from which all other quantities of interest 
follow. po at generation s, p g ) ,  is given in terms of that at generation (s + 1) by the 
simple recursion relation 

(s+l) 2 r  

pb“ =f(pb“+”) = c ( P o  (s+l) 1 K - 2 r (  l-: ) (7) 
K !  int(K/2)  

r = o  ( K  - 2 r ) ! ( r ! ) 2  

where int(x) means the integral part of x. The corresponding expression for the full 
field distribution is 

(s+l) n + 2 r  
K !  (pt+l) K n ) int[(K - n ) / 2 ]  

P‘”’ (nJ)  = 1 ) - -  
r = o  ( K  - n - 2 r ) ! ( n + r ) ! r !  

= Pes'( - n J )  n = 0 , 1 ,  . . . ,  K .  (8) 
The recursion relations (7)  for K = 2  and 3 are shown in figures l ( a )  and ( b )  

respectively. Note that for K = 2  (and other even K )  there exist two fixed points of 
the relation f ( p $ )  = p $ ,  of which p $  = 1 is unstable whilst the other fixed point is 
stable. For K odd there are three fixed points, those at p $  = 0 and 1 being unstable 
and the remaining one being stable. 

Consider an arbitrary po(  # p $ )  at the boundary. As one goes generation by 
generation inward, the iterated p o  will approach the stable fixed point p$*.  Table 1 
gives the values of p$* for 3 s a d 8. 

We now turn to the calculation of the ground-state energy. In the thermodynamic 
limit, the free energy per site for the sth generation is given by [lo] 

- F s / N s J = ( T / 2 J ) ( l n [ 4 c o s h P ( J + h )  coshp(J-h)])s (9) 

0 0.2 0.6 1.0 

Figure 1. Plots off(po) showing fixed points (0)  of the recursion relation (7)  for ( a )  k = 2, 
f( pol = f ( 3 p i  - 2p0+ 1) and ( b )  k = 3, f( po) = ip0(5pi - 6p, + 3 ) .  

PO Po 
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Table 1. Values pX* of stable fixed points and estimates of the ground-state energy per 
bond for graph partitionings of valences 3 S a S 8. 

a Source 

PX* 
E,,, Reference [6] 
E(PO**) Equation (12) 
Er. Equation (13) 
E, Equation (15) 
EM, Reference [ 151 

3 

0.333 
0.840 
0.778 
0.778 
0.815 
0.852 

4 

0.200 
0.732 
0.616 
0.670 
0.724 
0.734 

5 

0.229 
0.663 
0.575 
0.619 
0.645 
0.677 

6 

0.167 
0.605 
0.494 
0.567 
0.600 
0.618 

7 

0.183 
0.564 
0.475 
0.533 
0.554 
0.578 

8 

0.146 
0.528 
0.425 
0.501 
0.525 
0.541 

where ( )s refers to an average over the sth generation. At T = 0 ,  the energy is the 
same as the free energy and equation (9) takes the simple form 

where the form of E ( p o )  follows from the use of equation (8). This expression is 
interpreted as follows. In order to avoid double counting, in calculating the total 
energy of the system, we add up the coupling energy of each site with only its K 
descendents or, for the surface sites, the imposed boundary fields, except that when 
the field due to its descendents is zero an energy -J must be added to allow for 
interaction with the immediate ancestorf. The total energy is given by summing over 
all the sites. It is often convenient to separate out the exchange contribution to the 
energy from the boundary field contribution and to treat interior and boundary spins 
on equal footings. To this end we consider an alternative procedure, associating the 
exchange energy per spin in any generation with interaction only with its immediate 
ancestors 

K 

- E , / N , J =  K - '  1 ( P ( ~ - ~ ) ( ~ J ) + P ( ~ - - " ( - ~ J ) ) ~ + P ' " ( o ) .  (11) 
n = 1  

The energy due to the applied boundary fields is additional. Because of the one-to-one 
relationship between the number of sites in a generation and the number of bonds to 
the immediate ancestors, this expression also yields the exchange energy per bond 
ascendent from generation s. Clearly, the expression on the right-hand side is a function 
of p g ' .  Formally we write it as 

Let us now use the above to estimate the ground-state energy of the randomly 
connected ferromagnetic network with zero magnetisation, the graph partitioning 
problem. A first simple approximation is to assume that the energy per bond of the 
network is given by equation (12) with p g '  = p $ * ,  the stable fixed point value. A reason 
for this choice is the observation that any typical set of a finite number of connected 
vertices of the random graph looks like a section of a Bethe lattice away from its 
surface, where the field distribution tends towards its stable fixed-point form. This 
assumption leads to energies 10-20% higher than those found by Banavar et af [6] 
for 3 s a d 8, as shown in table 1. 

t Note that h = 0 does not imply (a )  = 0. In the case of h = 0 the mean spin is determined by the ancestral 
behaviour. 
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A possible reason that the above calculation gives energies higher than expected 
is that the energy due to boundary fields has been neglected. While this contribution 
is usually negligible for conventional lattices, this is not true for Bethe lattices in view 
of its notoriously significant fraction of boundary spins. To better simulate the complete 
connectedness of the graph problem (as opposed to the behaviour over a finite number 
of steps on the graph) we now, instead of imposing random boundary fields on the 
system, consider the Bethe lattice to have its boundary spins randomly interconnected, 
so that they also have the coordination number a of the rest, with the constraint of 
zero magnetisation. In the spirit that the probability of forming small loops is 
infinitesimally small, we can treat this random connection among the boundary spins 
as another Bethe lattice but of valence ( a  - 1). This (a - 1) Bethe lattice is similarly 
terminated by one of valence (a -2) and so on until the valence 2 lattice is reached. 
A valence 2 random graph is simply a randomly connected necklace. We refer to this 
construction as a Bethe hyperlattice and the procedure as valence reductiont. 

We now argue that the zero-magnetisation ground state of the hyperlattice is given, 
at least to a good approximation, in the thermodynamic limit by assuming that the 
( a  - 1) ‘core’ of an a hyperlattice is in one of its zero-magnetisation ground states and 
the boundary spin values are given by independent random choices from the sites of 
the core. This amounts to neglecting the effects on the core of the loops formed by 
the core with the ascendents on the a lattice. We expect this to be a good approximation 
for two reasons. First, because ( a  - 2 ) / ( a  - 1) of the sites of a Bethe lattice are on 
the surface, this procedure minimises the energy of a considerable fraction of the spins, 
whilst adjusting the rest accordingly. Second, if further correlations are ignored, no 
overall reduction in energy arises from changing the state of a boundary spin to match 
its siblings with the same immediate ancestor. Thus, for a = 3, say, the core necklace 
is in a state consisting of two large equal-sized domains of opposite spin; although 
there is an ancestral interaction energy improvement of -25 when a pair of boundary 
spins with a common ancestor is switched from + - into + + (or - -) to align with its 
+ (or -) ancestral spin, this is normally offset by a greater energy increase due to the 
necessary insertion of extra domain walls in the boundary systemS. This approximation 
is in the spirit of the effective random field approximations to conventional spin glass 
theory [13, 141. 

The above approximation, giving pa = 0 on the termination lattice, provides the 
energy associated with the ancestral sites of the main lattice via equations (12) and 
(7), yielding finally for the energy per bond of the a hyperlattice 

where Nb is the total number of bonds and 

t We might note in passing that this analogy suggests the variant of the travelling salesman problem [I21 
in which, given a randomly connected network, one looks for the path (or paths) which visits the greatest 
number of sites before returning to its starting point while passing through any site once at most. This path 
is the analogue of the terminating necklace and has a length (in terms of the number of sites visited) 
proportional to the total number of sites; for the hyperlattice the length of the terminating necklace is 
N / ( a  - 1 )  where N is the total number of sites. 
$ For an a = 2 necklace termination, the domain wall penalty is 45. 
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Again, the results for 3 S a S 8 are displayed in table 1. Compared with the simulations 
of Banavar et a1 [6], the energies obtained are 5-9% higher. 

In comparison with the simulation results it is also intriguing to note that if E(  p $ * )  
is taken as the energy per site and, with the number of bonds per site being a / 2 ,  the 
ground-state energy per bond is estimated from 

cm =2 . - 'E(p$*)  (15) 

the resulting energies are of the order of only 1-3% higher than those found in the 
simulations for 3 s a s 8; again see table 1 for details. Although the apparent agreement 
is remarkable for such a simple evaluation, this comparison must be viewed with 
caution since a corresponding procedure for the energy of an unrestricted ferromagnet 
(2a-l times the result of equation (10)) would yield an incorrect result (unlike the use 
of equation (1 1)). 

Finally, we comment that in a study of graph partitioning MBzard and Parisi [15] 
have reported equations (derived within an undetailed cavity method) which are 
identical in form to some of ours but have been given slightly different interpretations. 
Thus they reported an equation identical to our equation (4) at self-consistency but 
with h defined as hi = p-' tanh(a,), an effective field due to all influences on a,, whereas 
our hi is due to descendents only and does not necessarily determine (ai). Similarly 
they give an equation identical to our equation (7) at its fixed point with p $  identified 
as the number of 'crazy spins', whereas in our analysis h = 0 does not imply an ill-defined 
spin. Thus the full significance of the similarity of these equations is unclear. MBzard 
and Parisi also give an expression for the ground-state energy per spin which, when 
expressed in terms of P ( h ) ,  takes the form 

K 
E,,= -Eo/ NJ = a p t 2 / 2 + p $ (  1 - p $ )  + (P( d)+ P ( - n J ) ) n  (16) 

n = l  

reminiscent of our equation (10) but differing in the h = 0 term. This expression also 
gives very good agreement with the simulations (see table l ) ,  now lying slightly lower 
in energy. We have re-derived equation (16) within replica theory [3, 131 but with an 
interpretation closer to that of the Bethe glass, but we defer further discussion to a 
separate publication [ 161. 

In summary, we have shown that Bethe lattices with appropriate random boundary 
conditions provide reasonable approximations to partitioning of graphs of random 
connectivity. An advantage of Bethe lattices lies in the simplicity of recursion relations 
between generations. At zero temperature, for given boundary conditions, a single 
recursively determined parameter suffices to determine the ground-state properties. 

We would like to thank the SERC for partial financial support and Marc MCzard for 
sending a copy of [15] prior to publication. One of us (DS) would also like to thank 
Bernard Derrida and Nicolas Sourlas for useful conversations. 
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